首页> 外文OA文献 >Thermo-Mechanical Finite Element Analysis/Computational Fluid Dynamics Coupling of an Interstage Seal Cavity Using Torsional Spring Analogy
【2h】

Thermo-Mechanical Finite Element Analysis/Computational Fluid Dynamics Coupling of an Interstage Seal Cavity Using Torsional Spring Analogy

机译:级间密封腔热力学有限元分析/计算流体动力耦合的扭转弹簧模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The optimization of heat transfer between fluid and metal plays a crucial role in gas turbine design. An accurate prediction of temperature for each metal component can help to minimize the coolant flow requirement, with a direct reduction of the corresponding loss in the thermodynamic cycle. Traditionally, in industry fluid and solid simulations are conducted separately. The prediction of metal stresses and temperatures, generally based on finite element analysis, requires the definition of a thermal model whose reliability is largely dependent on the validity of the boundary conditions prescribed on the solid surface. These boundary conditions are obtained from empirical correlations expressing local conditions as a function of working parameters of the entire system, with validation being supplied by engine testing. However, recent studies have demonstrated the benefits of employing coupling techniques, whereby computational fluid dynamics (CFD) is used to predict the heat flux from the air to the metal, and this is coupled to the thermal analysis predicting metal temperatures. This paper describes an extension of this coupling process, accounting for the thermo-mechanical distortion of the metal through the engine cycle. Two distinct codes, a finite element analysis (FEA) solver for thermo-mechanical analysis and a finite volume solver for CFD, are iteratively coupled to produce temperatures and deformations of the solid part through an engine cycle. At each time step, the CFD mesh is automatically adapted to the FEA prediction of the metal position using efficient spring analogy methods, ensuring the continuity of the coupled process. As an example of this methodology, the cavity flow in a turbine stator well is investigated. In this test case, there is a strong link between the thermo-mechanical distortion, governing the labyrinth seal clearance, and the amount of flow through the stator well, which determines the resulting heat transfer in the stator well. This feedback loop can only be resolved by including the thermo-mechanical distortion within the coupling process
机译:流体和金属之间的热传递的优化在燃气轮机设计中起着至关重要的作用。对每种金属成分的温度的准确预测可以帮助最大程度地减少冷却剂流量需求,并直接减少热力学循环中的相应损失。传统上,在工业中,流体和固体模拟是分开进行的。通常基于有限元分析来预测金属应力和温度,需要定义一个热模型,其可靠性在很大程度上取决于固体表面规定的边界条件的有效性。这些边界条件是根据经验相关性获得的,这些经验相关性将局部条件表示为整个系统的工作参数,并通过发动机测试进行验证。但是,最近的研究证明了使用耦合技术的好处,其中使用计算流体动力学(CFD)来预测从空气到金属的热通量,并将其与预测金属温度的热分析相结合。本文描述了这种耦合过程的扩展,考虑了整个发动机循环过程中金属的热机械变形。迭代地耦合两个不同的代码,一个用于热机械分析的有限元分析(FEA)求解器和一个用于CFD的有限体积求解器,以通过发动机循环产生温度和固体零件的变形。在每个时间步骤中,CFD网格都会使用有效的弹簧模拟方法自动适应金属位置的FEA预测,从而确保耦合过程的连续性。作为该方法的一个示例,研究了涡轮定子井中的空腔流动。在此测试案例中,控制迷宫式密封间隙的热机械变形与流经定子井的流量之间有很强的联系,这决定了定子井中产生的热传递。该反馈回路只能通过在耦合过程中包括热机械变形来解决

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号